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Abstract – During its operation, sometimes it is a needed to 
swiftly replenish the battery from a partially depleted state, while 
strictly adhering to its technological limitations such as the 
battery terminal voltage and rated continuous charging current. 
To achieve this goal, this contribution outlines the dynamic 
battery recharging system, utilizing feedback provided by the 
nonlinear estimator of the battery state-of-charge (SoC) or SoC-
related open-circuit-voltage (OCV). In the former case, the 
estimator is realized as an extended Kalman filter (EKF), while 
in the latter case it is implemented using the methodology of a 
System Reference Adaptive Model (SRAM), whose design is 
based on the Lyapunov stability theory. Thus-obtained 
innovative adaptive battery chargers are compared against the 
conventional constant-current/constant-voltage (CCCV) charging 
system, which relies solely on battery voltage feedback. A 
comprehensive comparative analysis is conducted through 
extensive simulations utilizing the nonlinear equivalent circuit 
model of the lithium titanate battery (LTO) cell.  
 
Index Terms – Battery charging, State-of-charge, Nonlinear 
estimators, Extended Kalman filter (EKF), System Reference 
Adaptive Model (SRAM) 

I INTRODUCTION 
he widespread integration of renewable energy sources, such 
as solar and wind power, into the electricity grid presents 

exciting opportunities for a sustainable future [1]. However, their 
inherent variability necessitates robust energy storage solutions 
to bridge periods of low generation and ensures local grid 
stability [2]. Batteries play a crucial role in this context, enabling 
the storage and utilization of renewable energy when available, 
while providing reliable power when needed, as showcased for 
the cases of water desalinization systems [3] and sustainable eco-
industrial enterprises [4]. 

Conventional battery charging systems, such as the widely used 
constant-current/constant-voltage (CCCV) method, prioritize 
simplicity and ease of implementation [5]. However, they lack 
the ability to adapt to individual battery characteristics or 
dynamic operating conditions [6]. This limitation can lead to 
suboptimal charging times, reduced battery life, and even safety 
concerns due to overcharging [7, 8]. 

Several techniques address battery voltage and temperature 
constraints. The MPC approach [9, 10] dynamically adjusts the 
charging current to honor the temperature bounds, while artificial 
intelligence approaches, such as fuzzy logic control [11] and 
neural networks [12], rely on data-driven learning to adapt to 

varying battery conditions. Offline approaches such as genetic 
algorithms [13, 14], dynamic programming [15], and multi-
objective optimization [16] optimize the charging current 
profiles. However, the usefulness of the latter approach is limited 
by battery parameter variations during operation. To address this, 
online state-of- charge (SoC) estimation has been integrated with 
conventional charging control [17] to optimize the charging 
speed while respecting the charging current-related temperature 
limits. The additional benefit of SoC estimator-based approaches 
is in ensuring high precision of the final battery SoC at the end of 
the charging process. 

Battery SoC estimation is typically based on the nonlinear 
battery model embedded within the nonlinear SoC estimator, 
typically realized in the form of an extended Kalman filter of 
EKF [18], wherein the battery equivalent circuit model used 
within the EKF-based estimator [19] can have different levels of 
complexity [20], or the battery can be represented by its 
equivalent electrochemical model [21]. Estimating the open-
circuit-voltage (OCV) that is directly related to the SoC can be 
performed by utilizing Lyapunov stability theory and a System 
Reference Adaptive Model (SRAM) that dynamically estimates 
the battery model parameters in real time [22], and thus can be 
used for supervision of the charging process without requiring 
the explicit a-priori knowledge of the process model parameters 
[23]. A good overview of battery SoC estimation techniques can 
be found in [24]. 

Adaptive SoC feedback and OCV feedback systems for charging 
process speed-up have been previously proposed in [25] and 
[23], respectively. In these applications of the adaptive charging 
systems presented in [23] and [25], a LiFePO4 battery cell 
characterized by the relatively moderate nominal rated charging 
rate of 0.3C (30% of charge capacity per hour) has been used 
[26]. The comprehensive simulation analysis presented in [23] 
and [25] has shown that by increasing the maximum charging 
current towards 0.7C in both the conventional charging 
benchmark and adaptive control strategies, adaptive control 
strategies can achieve about 25% speedup compared to the 
benchmark case of a conventional CCCV charging. The advent 
of next-generation lithium titanate or lithium titanium oxide 
(LTO) battery cells has motivated further research of these 
adaptive charging control strategies because these cells are 
characterized by superior performance in terms of maximum 
continuous charging current (with 1C charging rates having 
minimal effect on the battery cell aging), as well as superior 
thermal stability and overall robustness [27]. 

To this end, this paper presents and compares the previously 
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proposed adaptive charging systems from [23, 25], which were 
designed to overcome the limitations of conventional methods by 
means of augmenting (retrofitting) the conventional CCCV 
charging system with an additional feedback loop based on SoC-
related information. Building upon established nonlinear 
estimation techniques, the presented approaches can achieve 
faster and safer charging while respecting battery safety 
constraints in terms of terminal voltage and continuous charging 
current limitations. The study presented in this paper assesses the 
benefits of charging strategies previously developed for earlier-
generation and lower charging rate LiFePO4 battery cell to the 
novel high charging rate LTO cell. It systematically examines in 
the MATLAB/Simulink simulation environment the effect of 
initial battery SoC and charging current limit to the relative 
speed-up of the two adaptive control strategies with respect to the 
conventional charging system benchmark, and the main results of 
this simulation study are confirmed by means of experiments. 

The paper is organized as follows. Section II presents the 
charging system layout, whereas Section III presents the 
experimentally identified battery equivalent circuit model. 
Section IV outlines the three charging strategies whose 
performance (charging speed) is examined and compared in this 
paper, along with the SoC and OCV estimators used within the 
adaptive control strategies. Section V presents the results of 
comprehensive simulation assessment of adaptive control 
strategies with respect to the conventional charging benchmark, 

whereas Section VI presents the results of experimental 
verification of the proposed battery charging systems. Section 
VII presents a brief discussion of the obtained results, while the 
concluding remarks are given in Section VIII. 

II CHARGING SYSTEM LAYOUT 
Fig. 1 (right) depicts a conventional battery charging system 
schematic. The core topology is a buck DC/DC converter 
comprised of switching element Q (MOSFET), energy storage 
inductor Lc, and parallel freewheeling diode D. For active load 
scenarios (e.g., a battery cell), the optional series-connected 
blocking diode Db safeguards against reverse current flow. 
Converter output voltage (uc) is regulated by an embedded 
current controller. This controller receives its setpoint (ibR) from 
a supervisory control layer, from either a battery voltage 
controller or a SoC management system [8], as discussed in 
subsequent sections. 

Figure 1 (left) presents an equivalent circuit model for a battery 
cell. It features a series-connected ideal voltage source (Uoc) 
representing the cell's open-circuit voltage Uoc connected in 
series with a parallel RC circuit and an additional series 
resistance Rb. The above RC circuit models the cell's dominant 
electrolyte polarization behavior (with Rp being the polarization 
resistance, and Cp being the polarization capacitance). Finally, 
the cell's equivalent series resistance is represented by the 
resistor Rb. 

Figure 1. Battery charging system with buck converter and battery equivalent electrical circuit model [8] 

III BATTERY MODEL 
Applying the Kirchhoff's voltage law to the battery model in Fig. 
1, the battery terminal voltage is expressed as follows [28]: 

𝑢𝑏 = 𝑖𝑏𝑅𝑏 + 𝑢𝑝 + 𝑈𝑜𝑐. (1) 

Battery SoC (ξ) is defined as the time integral of battery current, 
normalized by battery charge capacity Qb: 
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while the polarization voltage up term in equation (2) can be 
expressed as [13]: 

𝑢𝑝 = 1
𝜏𝑝
∫(𝑢𝑝 − 𝑅𝑝𝑖𝑏)𝑑𝑡 ⇔ �̇�𝑝 = 𝑢𝑝−𝑅𝑝𝑖𝑏

𝜏𝑝
(3) 

where τp = RpCp is the polarization time constant. 

The designs of nonlinear estimators of battery SoC and OCV, 
which are presented subsequently, are based upon the battery 
terminal voltage equation (1) combined with the differential 
equation (2) and state-of-charge differential equation (3). In 
particular, equation (2) is used within the SRAM-based OCV 
estimator design, whereas both equations (2) and (3) are needed 
to define a suitable state-space model for the design of EKF-
based state estimator. 

Figures 2 and 3 depict experimentally derived relationships 
between the SoC, battery current, and battery model parameters 
of a commercial 30 Ah/2.4V/6C LTO cell's equivalent circuit 
model [28]. These include the OCV vs. SoC dependence, series 
resistance, polarization resistance, and polarization time constant 
τp = RpCp. The presented data have been obtained under constant-
temperature ambient conditions. The characteristics reveal 
marked SoC-dependence for all modeled parameters, particularly 
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at extreme SoC levels. These experimentally determined 
parameter maps (Figures 2 and 3) are directly integrated into 
Eqs. (1)-(3) within a MATLAB/Simulink simulation model. The 
model, having battery current (ib) as input and battery terminal 
voltage (ub) as output, is schematically represented by block 
diagram in Fig. 4. 

Figure 2. Battery OCV vs. SoC curve 

Figure 3. (a) Equivalent series resistance, (b) polarization 
resistance, and (c) polarization time constant curves 

IV CONTROL SYSTEMS UNDER INVESTIGATION 
Block diagrams in Fig. 5 depict the three battery charging control 
strategies from [5], [25] and [23]). Firstly, the conventional 
CCCV controller with voltage limiting (CCCV-VL), which is 
considered as a benchmark case is shown in Fig. 5a [5]. This 
charging control system uses a voltage limiting controller based 
on battery terminal voltage feedback (ubm). The current reference 
(target value) ibR combines the maximum charging current (Imax, 

used during the constant-current phase) and the controller's 
limiting command (iblim), which reduces the charging current 
when ubm exceeds its limit (target) value ublim. The latter constant-
voltage phase is characterized by asymptotically decreasing 
charging current and the battery terminal voltage approaching the 
SoC-dependent OCV Uoc(ξ), i.e. ib → 0, ub → Uoc [5]. 

Figure 4. Block diagram of battery equivalent circuit model 

Fig. 5b illustrates the so-called CCCV-SoC adaptive approach 
using SoC feedback [25]. Here, the principal SoC controller is 
provided with the SoC target value and produces the charging 
current reference ibR (limited to Imax during the constant-current 
phase) based on SoC feedback provided by the SoC estimator. 
The SoC estimator, implemented in the form of an EKF, can be 
regarded as an adaptive digital twin (see e.g. [28]) of the battery 
cell, thus allowing for more targeted charging towards the fully 
charged state when compared to the conventional (CCCV-VL) 
charging system. The voltage limiting PI controller now provides 
a safety function by constraining the battery voltage to ublim. 
Notably, this limit value (ublim) can now be made higher than in 
the case of CCCV-VL strategy and is preset independently of the 
SoC control loop. Such modular control system structure allows 
conventional systems from Fig 5a to be easily upgraded with 
adaptive features. 

Finally, Fig 5c shows an adaptive control system with the OCV 
controller, denoted herein as the CCCV-OCV control strategy 
[23]. The primary OCV controller uses the estimated OCV 
feedback, commanding the current reference ibR, again limited to 
Imax. OCV feedback (Uoc estimate) is provided by the SRAM 
estimator. To estimate the battery model parameters in real-time, 
SRAM-based estimator requires continuous excitation via a 
pseudo-random binary sequence (PRBS) test signal ∆ibR 
superimposed to the overall current reference (ibR + iblim), see e.g. 
[23]. Similar to previous charging control strategies, the voltage 
limiting controller ensures safe operation by maintaining the 
battery terminal voltage below the limit value ublim via its current 
command iblim. Again, ublim is preset independently of the target 
open-circuit voltage (OCV reference) UocR [23]. 

Figure 6 shows principal block diagram representations of the 
EKF-based SoC estimator from [25] and OCV estimator based 
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on SRAM principle from [23]. Both nonlinear estimators are 
implemented as feedback loop systems. In particular, these 
estimators attempt to minimize the model output prediction error 
em between the estimated battery voltage (battery model output) 
and the battery voltage measurement by means of corrective 
feedback action. 

Figure 5. Block diagram of (a) CCCV-VL charging control 
strategy, (b)  CCCV-SoC control strategy, and (c) CCCV-OCV 

control strategy  

In the case of EKF-based SoC estimation (Fig. 6a), the estimated 
battery model output is obtained from the copy (digital twin) of 
the battery model (equations (1) – (3)) implemented with a-priori 
known parameter maps (Figs. 2 and 3), as illustrated in Fig. 4. 
The battery voltage prediction error is multiplied by Kalman 
filter gains matrix K and fed back to the model to compensate for 
the model following error em. The so-called optimal gains of the 
EKF-based estimator are calculated based on the linearized 
process model (Fig. 6a). The SRAM-based battery model 
parameters estimator (Fig. 6b) uses the known structure of the 

battery model and adapts the model parameters on-line by using 
the Lyapunov stability criterion-based adaptation law [23] which 
requires battery voltage and current filtering and related 
extraction of battery current time derivative. These signals are 
then combined with the adaptive model prediction error em to 
provide the adaptation law for on-line parameter updates. As 
mentioned above, the SRAM-based parameter estimator requires 
that the CCCV-OCV control system is subjected to persistent 
excitation realized by means of the superimposed PRBS signal 
∆ibR (see Fig. 5c). 

Figure 6. Principal block diagrams of (a) EKF-based battery 
state-of-charge estimator and (b) battery OCV estimator based on 

SRAM principle  

Detailed design procedures for CCCV-VL, CCCV-SoC and 
CCCV-OCV control systems and the respective battery state and 
parameter estimators can be found in references [25] and [23]. 

V COMPARATIVE SIMULATION RESULTS 
Simulations comparing various charging strategies considered 
different initial battery SoC levels (ξ0) and constant-current stage 
charging current limits (Imax). Table 1 summarizes these values 
and additional key simulation parameters. Notably, the charging 
process terminates in the constant-voltage stage when the battery 
current falls below the turn-off current (Imin). 
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Table 1. Simulation model and charging scenarios parameters. 

Parameter Value 

Battery cell charge capacity Qb 30 Ah 
Charging current rated value (1C rate) 30 A 
Charging strategy current maximum 
values Imax in simulation scenarios  

30 A, 24 A, 18 A, 12 A 
(1C, 0.8C, 0.6C, 0.4C) 

Charging strategy turn-off current Imin 0.3 A (0.01C) 

Battery SoC initial conditions ξ0 20%, 40%, 60%, 80% 

CCCV-VL voltage limit ublim 2.68 V 
CCCV-SoC/OCV voltage limit ublim 2.72 V 

Battery SoC target value ξR 100% 

Figure 7 shows the comparative simulation responses of the 
presented charging strategies with Imax = 30A, which corresponds 
to 1C rate for the LTO cell under examination [30], and initial 
SoC at 20%. Both the CCCV-SoC and CCCV-OCV strategies 
exhibit a sharper transition to zero current post constant-current 
charging compared to the CCCV-VL strategy's asymptotic 
transient towards zero current. This results in shorter charging 
times (see top plots in Figs. 7a and 7b), facilitated by the CCCV-

SoC and CCCV-OCV strategy's ability to briefly exceed terminal 
voltage limits during the final phase (see battery voltage traces in 
Figs. 7a and 7b). Both adaptive control strategies (CCCV-SoC 
and CCCV-OCV) achieve near-identical final SoC values. The 
EKF-based SoC estimator accurately tracks the battery's actual 
SoC (Fig. 7a), whereas the SRAM estimator OCV tracking 
ability is somewhat less favorable in the initial portion of the 
response (Fig. 7b). The latter can be partly attributed to the rate 
of change of OCV when SoC is quite low, as shown in Fig. 2. 

Figure 8 presents the relative charging speedup factors κchg and 
the final SoC mismatch ∆ξfin values for simulation scenarios 
given in Table I for both adaptive charging strategies (CCCV-
SoC and CCCV-OCV) compared to conventional CCCV-VL 
charging strategy. The relative speedup factor κchg of the adaptive 
CCCV-SoC and CCCV-OCV charging strategies to the 
conventional CCCV-VL strategy is calculated as the ratio of the 
difference in charging times as follows: 

𝜅𝑐ℎ𝑔 = �1 −
𝑇𝑐ℎ𝑔,𝑆𝑜𝐶(𝑂𝐶𝑉)

𝑇𝑐ℎ𝑔,𝑉𝐿
� ⋅ 100% (4) 

where Tchg,VL, Tchg,SoC and Tchg,OCV are CCCV-VL, CCCV-SoC 
and CCCV-OCV strategy charging times, respectively. 

Figure 7. Comparative simulation results: (a) CCCV-VL vs. CCCV-SoC strategy and  (b)CCCV-VL vs. CCCV-OCV strategy 
for 30 A current limit and initial SoC of 20% 

The second criterion that can be used to assess the presented 
charging strategies is final SoC mismatch ∆ξfin between the 
CCCV-VL and the CCCV-SoC strategy, given by: 

𝛥𝜉𝑓𝑖𝑛 = 𝜉𝑓𝑖𝑛,𝑉𝐿 − 𝜉𝑓𝑖𝑛,𝑆𝑜𝐶(𝑂𝐶𝑉) (5) 

where ξfin,VL, ξfin,SoC and ξfin,OCV are the final SoC values obtained 
by the CCCV-VL, CCCV-SoC and CCCV-OCV strategies. 

The results presented in Fig. 8 clearly demonstrate consistent 

charging time reduction of adaptive charging control strategies 
compared to the CCCV-VL benchmark. Recharging speedup is 
most prominent (over 20%) at higher charging currents (higher 
Imax) and initial SoC (higher ξ0). As explained in Figs. 7 and 8, 
CCCV-SoC and CCCV-OCV exhibit a slightly lower final SoC 
(ξfin) due to their sharper current termination. However, the final 
SoC mismatch Δξfin remains consistently below 0.2%, thus being 
inconsequential in practical applications. 



6   energija, ekonomija, ekologija, 2024, god. XXVI, br. 2 

Figure 8. Comparative performance indices CCCV-SoC and CCCV-OCV strategies compared to CCCV-VL benchmark: (a) CCCV-
SoC charging speedup and (b) final SoC mismatch, and (c) CCCV-OCV charging speedup  and (d) final SoC mismatch 

VI EXPERIMENTAL RESULTS 
Experimental verification of the proposed charging concept has 
been carried out on the battery test setup shown in Fig. 9.  

Figure 9. Photograph of the battery experimental setup 

An industrial control computer “1” equipped with cards for 
acquisition and control executes the dedicated real-time control 

code and commands appropriate current reference to the 
laboratory power source “2” for charging the commercial 
30Ah/2.4V/6C LTO battery cell “3” [30]. A high-power blocking 
diode “4” prevents accidental reverse current flow and protects 
the circuit in the case of incorrect connection of power terminals, 
while a circuit breaker “5” is used for over-current protection. 
For galvanic isolation of the battery voltage measurement analog 
input from the DC/DC converter power terminals, the setup also 
features an isolation amplifier for voltage measurement “7” with 
its own separate power supply “6”. 

Figures 10 and 11 show the comparative experimental results of 
the proposed control strategies. Tests were conducted with an 
upper charging current limit of 18A (0.6C) and two initial SoC 
values: ξ0 = 4.2% (very depleted) and ξ0 = 69.5% (medium-
high). The initial SoC values were determined from the battery's 
idling voltage (u0) measured before the charging started (see 
Figs. 10 and 11). The study did not consider higher charging 
current limits (0.8C and 1C) due to a safety constraint: increased 
heat losses at the reverse-flow blocking diode. Results in Figs. 10 
and 11 confirm that all three charging strategies can successfully 
bring the battery SoC (OCV) towards the target value which 
corresponds to 100% battery SoC. Moreover, the experimental 
results also confirm the key findings of the simulation analysis 
conducted for a broader range of initial SoC conditions and 
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current limit values. Specifically, they confirm that the CCCV-
OCV and CCCV-OCV control strategies can achieve a 

noticeable speedup in the charging process with respect to the 
conventional CCCV-VL charging strategy. 

Figure 10. Comparative experimental results of CCCV-VL and CCCV-SoC strategies for 18 A current limit and initial SoC of 
(a) 4.2% and (b) 69.5% 

Figure 11. Comparative experimental results of CCCV-VL and CCCV-OCV strategies for 18 A current limit and initial SoC of 
(a) 4.2% and (b) 69.5% 

VII DISCUSSION OF RESULTS 

The presented research addresses the inherent limitations of 
conventional CCCV battery charging systems. By employing 
more sophisticated model-based adaptive control strategies, such 
as the proposed EKF-based CCCV-SoC and SRAM-based 
CCCV-OCV strategy, significant improvements in charging 
performance can be demonstrated. The core strengths of these 
adaptive systems lie in their ability to estimate key battery 

parameters (SoC or OCV) in real-time using nonlinear 
estimators. This continuous monitoring enables optimized 
charging strategies that adapt to the specific battery's 
characteristics and operating conditions. 

Simulation results convincingly illustrate the advantages of the 
adaptive charging strategies. Both methods exhibit notably faster 
charging times compared to the conventional CCCV-VL 
benchmark, particularly at higher charging currents and initial 
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SoC levels. This speedup highlights the ability of adaptive 
systems to push operational boundaries while still within safe 
operating limits. Moreover, both the EKF and SRAM-based 
charging methods demonstrate remarkable consistency in 
achieving the desired final SoC, with negligible discrepancies 
compared to conventional charging. In addition, all three 
charging strategies have been experimentally verified, and 
experimental results support the findings of the comprehensive 
simulation study in terms of charging speed-up when adaptive 
charging strategies are used. This indicates that adaptive 
charging strategies could be used in future practical applications.  

Despite the clear benefits demonstrated, it is important to 
acknowledge the potential challenges associated with model-
based adaptive charging approaches. Accuracy is dependent on 
the quality of the underlying battery model, parameter 
identification, and sensor measurements. Further research could 
focus on enhancing the robustness of these systems to parameter 
variations and exploring the inclusion of temperature 
compensation mechanisms. Additionally, while simulations offer 
valuable initial insights, experimental validation under real-world 
conditions will be essential for full technological maturation. 

VIII CONCLUSION 
The presented work demonstrates the effectiveness of adaptive 
charging systems in overcoming the limitations of traditional 
CCCV battery charging approaches. The developed EKF-based 
CCCV-SoC and SRAM-based CCCV-OCV systems offer a 
significant improvement in battery charging speed, wherein 
comprehensive simulations showcase the consistent reduction in 
charging time while maintaining the desired final SoC levels. 

The potential applications of these adaptive methods extend far 
beyond the initial simulation study. Their ability to optimize 
charging performance in terms of charging speed while not 
perceptibly affecting the battery lifespan makes them highly 
attractive for integration into renewable energy systems, electric 
vehicles, and other battery-dependent applications. Future work 
can thus be focused on more extensive field tests and exploration 
of complementary control techniques that can further unlock the 
potential of the adaptive model-based charging control systems, 
with many practical implications such as more efficient and 
sustainable battery energy storage solutions. 

ACKNOWLEDGEMENT 
Research supported by the European Commission through the 
Horizon 2020 project “Maximizing the impact of innovative 
energy approaches in the EU islands” (INSULAE). 

REFERENCES 
[1] Zakariazadeh, A., Ahshan, R., Al Abri, R., Al-Abri, M. Renewable energy 

integration in sustainable water systems: A review. Cleaner Engineering and 
Technology, Vol. 18, No. 100722, 2024. 
https://doi.org/10.1016/j.clet.2024.100722 

[2] Hassan, Q., Algburi, S., Sameen, Z.A., Salman, H.M., Jaszczur, M. A 
review of hybrid renewable energy systems: Solar and wind-powered 
solutions: Challenges, opportunities, and policy implications, Results in 
Engineering, Vol. 20, No. 101621, 2023. 
https://doi.org/10.1016/j.rineng.2023.101621 

[3] Shokri, A., Fard, M.S. A sustainable approach in water desalination with the 
integration of renewable energy sources: Environmental engineering 

challenges and perspectives, Environmental Advances, Vol. 9, No. 100281, 
2022. https://doi.org/10.1016/j.envadv.2022.100281 

[4] Neri, A., Butturi, M.A. Lolli, F., Gamberini, R. Inter-firm exchanges, 
distributed renewable energy generation, and battery energy storage system 
integration via microgrids for energy symbiosis, Journal of Cleaner 
Production, Vol. 414, No. 137529, 2023. 
https://doi.org/10.1016/j.jclepro.2023.137529 

[5] Pavković, D., Lobrović, M., Hrgetić, M., Komljenović, A., Smetko, V. 
Battery current and voltage control system design with charging application, 
In Proc. IEEE Conference on Control Applications (CCA 2014), Juan Les 
Antibes, France, pp. 1133-1138, 11 December 2014. 
https://doi.org/10.1109/CCA.2014.6981481     

[6] Kandasamy, V., Venkatesan, M. Adaptive electric vehicle charging method 
to improve the battery life, In Proc. 2nd International Conference on 
Advancements in Electrical, Electronics, Communication, Computing and 
Automation (ICAECA), Coimbatore, India, pp. 1-4, 16-17 June 2023. 
https://doi.org/10.1109/ICAECA56562.2023.10200210  

[7] Dubarry, M., Qin, N., Brooker, P. Calendar aging of commercial Li-ion 
cells of different chemistries – A review, Current Opinion in 
Electrochemistry, Vol. 9, pp. 106-113, 2018. 
https://doi.org/10.1016/j.coelec.2018.05.023 

[8] Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., 
Li, X., Tavajohi, N., Li, B. A review of lithium-ion battery safety concerns: 
The issues, strategies, and testing standards, Journal of Energy Chemistry, 
Vol. 59, pp. 83-99, 2021. https://doi.org/10.1016/j.jechem.2020.10.017 

[9] Pozzi, A., Raimondo, D.M. Stochastic model predictive control for optimal 
charging of electric vehicles battery packs, Journal of Energy Storage, Vol. 
55, Part A, No. 105332, 2022. https://doi.org/10.1016/j.est.2022.105332  

[10] Xie, S., Hu, X., Qi, S., Tang, X., Lang, K., Xin, Z., Brighton, J. Model 
predictive energy management for plug-in hybrid electric vehicles 
considering optimal battery depth of discharge, Energy, Vol. 173, pp. 667-
678, 2019. https://doi.org/10.1016/j.energy.2019.02.074 

[11] Hsieh, G.C., Chen, L.R., Huang, K.S. Fuzzy-controlled li-ion battery charge 
system with active state-of-charge controller, IEEE Transactions on 
Industrial Electronics, Vol. 48, No. 3, pp. 585-593, 2001. 
https://doi.org/10.1109/41.925585  

[12] Fan, Y., Wu, J., Chen, Z., Wu, H., Huang, J., Liu, B. Data-driven state-of-
charge estimation of lithium-ion batteries. In Proc. 8th International 
Conference on Power Electronics Systems and Applications (PESA 2020), 
Hong Kong, China, pp. 1-5, 07-10 December 2020.  
https://doi.org/10.1109/PESA50370.2020.9344017  

[13] Jiang, L., Huang, Y., Li, Y., Yu, J., Qiao, X., Huang, C., Cao, Y. 
Optimization of variable-current charging strategy based on SOC 
segmentation for Li-ion battery, IEEE Transactions on Intelligent 
Transportation Systems, Vol. 22, No. 1, pp. 622-629, 2021. 
https://doi.org/10.1109/TITS.2020.3006092 

[14] Vo, T.T., Chen, X., Shen, W., Kapoor, A. New charging strategy for 
lithium-ion batteries based on the integration of Taguchi method and state 
of charge estimation, Journal of Power Sources, Vol. 273, pp. 413-422, 
2015. https://doi.org/10.1016/j.jpowsour.2014.09.108 

[15] Chen, Z., Xia, B., Mi, C. C., Xiong, R. Loss-minimization-based charging 
strategy for Lithium-Ion battery, IEEE Transactions on Industry 
Applications, Vol. 51, No. 5, pp. 4121-4129, 2015. 
https://doi.org/10.1109/TIA.2015.2417118 

[16] Liu, K., Li, K., Ma, H., Zhang, J., Peng, Q. Multi-objective optimization of 
charging patterns for lithium-ion battery management, Energy Conversion 
and Management, Vol. 159, pp. 151-162, 2018. 
https://doi.org/10.1016/j.enconman.2017.12.092 

[17] Lee, K.T., Dai, M.J., Chuang, C.C. Temperature-compensated model for 
Lithium-Ion polymer batteries with extended Kalman Filters State-of-
charge estimation for an implantable charger, IEEE Transactions on 
Industrial Electronics, Vol. 65, No. 1, pp. 589-596, 
2018.https://doi.org/10.1109/TIE.2017.2721880 

[18] Xiong, R., He, H., Sun, F., Zhao, K. Evaluation on state of charge 
estimation of batteries with adaptive extended Kalman filter by experiment 
approach, IEEE Transactions on Vehicular Technology, Vol. 62, No. 1, pp. 
108-117. 2013. https://doi.org/10.1109/TVT.2012.2222684  

[19] He, H., Xiong, R., Zhang, X., Sun, F., Fan, J. State-of-Charge Estimation of 
the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based 
on an Improved Thevenin Model, IEEE Transactions on Vehicular 
Technology, Vol. 60, No. 4, pp. 1461-1469, 2011. 

https://doi.org/10.1016/j.clet.2024.100722
https://doi.org/10.1016/j.rineng.2023.101621
https://doi.org/10.1016/j.envadv.2022.100281
https://doi.org/10.1016/j.jclepro.2023.137529
https://doi.org/10.1109/CCA.2014.6981481
https://doi.org/10.1109/ICAECA56562.2023.10200210
https://doi.org/10.1016/j.coelec.2018.05.023
https://doi.org/10.1016/j.jechem.2020.10.017
https://doi.org/10.1016/j.est.2022.105332
https://doi.org/10.1016/j.energy.2019.02.074
https://doi.org/10.1109/41.925585
https://doi.org/10.1109/PESA50370.2020.9344017
https://doi.org/10.1109/TITS.2020.3006092
https://doi.org/10.1016/j.jpowsour.2014.09.108
https://doi.org/10.1109/TIA.2015.2417118
https://doi.org/10.1016/j.enconman.2017.12.092
https://doi.org/10.1109/TIE.2017.2721880
https://doi.org/10.1109/TVT.2012.2222684


 energija, ekonomija, ekologija, 2024, god. XXVI, br. 2 9 

https://doi.org/10.1109/TVT.2011.2132812 
[20] Sepasi, S., Ghorbani, R., Liaw, B. Y. Improved extended Kalman filter for 

state of charge estimation of battery pack, Journal of Power Sources, Vol. 
255, pp. 368-376, 2014. https://doi.org/10.1016/j.jpowsour.2013.12.093  

[21] Di Domenico, D., Stefanopoulou, A., Fiengo, G. Lithium-Ion Battery State 
of Charge and Critical Surface Charge Estimation Using an Electrochemical 
Model-Based Extended Kalman Filter, ASME Journal of Dynamic Systems, 
Measurement, and Control, Vol. 132, No. 6, 061302-1, 2010. 
https://doi.org/10.1115/1.4002475  

[22] Othman, B.M., Salam, Z., Husain, A. R. A computationally efficient 
adaptive online state-of-charge observer for Lithium-ion battery for electric 
vehicle, Journal of Energy Storage, Vol. 49, No. 104141, 2022. 
https://doi.org/10.1016/j.est.2022.104141 

[23] Pavković, D., Kasać, J., Krznar, M., Cipek, M. Adaptive constant-
current/constant-voltage charging of a battery cell based on cell open-circuit 
voltage estimation, World Electric Vehicle Journal, Vol. 14, No. 6, pp. 155, 
2023. https://doi.org/10.3390/wevj14060155 

[24] He, J., Meng, S., Yan, F. A comparative study of SOC estimation based on 
equivalent circuit models, Frontiers in Energy Research, Vol. 10, No. 
914291, 2022. https://doi.org/10.3389/fenrg.2022.914291  

[25] Pavković, D., Premec, A., Krznar, M., Cipek, M. Current and voltage 
control system designs with EKF-based state-of-charge estimator for the 
purpose of LiFePO4 battery cell charging, Optimization and Engineering, 
Vol. 23, pp. 2335-2363, 2022. https://doi.org/10.1007/s11081-022-09728-1 

[26] GWL/Power Group, SE100AHA cell specification. http://www.ev-
power.eu/CALB-40Ah-400Ah/SE100AHA-Lithium-Cell-LiFePO4-3-2V-
100Ah.html  [pristupljeno 20.02.2024] 

[27] Nemeth, T., Schröer, P., Kuipers, M., and Sauer, D. U. Lithium titanate 
oxide battery cells for high-power automotive applications - Electro-thermal 
properties, aging behavior and cost considerations, Journal of Energy 

Storage, Vol. 31, No. 101656, 2020. 
https://doi.org/10.1016/j.est.2020.101656  

[28] Kvaternik, K., Pavković, D., Kozhushko, Y., Cipek, M., Krznar, M. 
Lithium-Titanate Battery Cell Experimental Identification and State-of-
Charge Estimator Design, In Proc. 18th Conference on Sustainable 
Development of Energy, Water and Environment Systems (SDEWES 2023), 
Dubrovnik, Croatia, No. 36, 24-29 September 2023.  

[29] VanDerHorn, E., Mahadevan, S. Digital Twin: Generalization, 
characterization and implementation, Decision Support Systems, Vol. 145, 
No. 113524, 2021. https://doi.org/10.1016/j.dss.2021.113524 

[30] ELERIX EX-30TK Extreme Power LTO Cell, VDA size 173/100, 
Technical Specification,   https://faktor.de/out/media/ELERIX-EX-T30K-
QuickDatasheet.pdf [pristupljeno 20.02.2024] 

AUTHORS 
Danijel Pavković – Prof. dr. sc., University of Zagreb, Faculty of 
Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 
danijel.pavkovic@fsb.unizg.hr, ORCID 0000-0001-8045-5109  
Sandra Stanković – MS env. eng., Academy of Applied Technical and 
Preschool Studies Department of Niš, Niš, Serbia, 
sandra.stankovic@akademijanis.edu.rs, ORCID 0000-0002-0466-1426 
Karlo Kvaternik – mag. ing. mech., AVL-AST d.o.o., Zagreb, Croatia, 
karlo.kvaternik@avl.com 
Nikolina Sitar – mag. ing. mech., Rimac Technology, Sveta Nedelja, 
Croatia, nikolina.sitar@rimac-technology.com 
Mihael Cipek – Doc. dr. sc., University of Zagreb, Faculty of 
Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 
mihael.cipek@fsb.unizg.hr, ORCID 0000-0002-0611-8144 
 

Adaptivni modeli za poboljšane sisteme punjenja baterija 
Rezime - U procesu operativnog delovanja, periodično se javlja potreba za brzim dopunjavanjem baterije iz delimično 
ispražnjenog stanja, uz striktno poštovanje njenih tehnoloških ograničenja kao što su napon baterije i nominalna 
kontinuirana struja punjenja. Da bi se postigao ovaj cilj, ovaj rad opisuje sistem dinamičkog punjenja baterije, koristeći 
povratnu informaciju koju daje procenjivač (estimator) stanja napunjenosti baterije (SoC) ili napona otvorenog kola 
(OCV) koji je usko povezan sa SoC-om. U prvom slučaju, estimator je realizovan kao prošireni Kalmanov filter (EKF), 
dok je u drugom slučaju implementiran primenom metodologije Sistemskog referentnog adaptivnog modela (SRAM), 
čiji je dizajn zasnovan na teoriji stabilnosti Ljapunova. Tako dobijeni inovativni adaptivni punjači baterija upoređuju se 
sa konvencionalnim sistemom punjenja konstantnom strujom/konstantnim naponom (CCCV), a koji se oslanja 
isključivo na povratnu vezu po naponu baterije. Sveobuhvatna komparativna analiza je sprovedena kroz opsežne 
simulacije koristeći model nelinearnog ekvivalentnog kola ćelije litijum-titanat (LTO) baterije.  

Klučne reči - Punjenje baterije; stanje napunjenosti; nelinearni procenjivači; prošireni Kalmanov filter (EKF); sistemski 
referentni adaptivni model (SRAM) 
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